A New Glycosylation Procedure Utilizing **Rare Earth Salts and Glycosyl Fluorides,** with or without the Requirement of Lewis Acids

Shigeru Hosono, Won-Sup Kim, Hiroaki Sasai, and Masakatsu Shibasaki*

Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Received November 8, 1994

Stereoselective glycosylation reactions have an important role in carbohydrate chemistry. A variety of glycosylation methods^{1a} have been exploited since the advent of the classical Koenigs-Knorr synthesis.^{1b} Typical methods most frequently employ glycosyl fluorides as donors in the synthesis of rather complex sugar chains.² These fluorides have been glycosylated in the presence of various Lewis acids such as $SnCl_2-AgClO_4$,^{3a} Cp₂-MCl₂-AgClO₄ (M = Ti, Zr, Hf),^{3b} SiF₄,^{3c} Me₃SiOTf,^{3c} $BF_3 \cdot Et_2O$, ^{3d} Me₂GaX (X = Cl, OTf), ^{3e} TiF₄, ^{3f} and Tf₂O.^{3g} Most commonly, SnCl₂-AgClO₄ or Cp₂MCl₂-AgClO₄ have been utilized. We have developed a more costeffective and powerful glycosylation reaction using glycosyl fluorides. This method uses rare earth metal salts, glycosyl fluorides, and glycosyl acceptors, with or without the usual Lewis acids, $ZnCl_2$ and $Ba(ClO_4)_2$. The basic idea evolved from the realization that the rare earth metal-fluorine bond has a large bond dissociation energy.4,5

We began with an examination of the fluorophilicity of rare earth metal salts by carrying out the reaction of the glucose derivative 1^6 with cyclohexanol 2 under a variety of conditions (Figure 1). We were pleased to find that several rare earth metal salts were highly efficient in this reaction. For β -selectivity, the use of Yb(OTf)₃, K_2CO_3 , and $MS4A^7$ in MeCN was found to be most effective (run 1, Table 1). On the other hand, for α -selectivity, the utilization of either Y(OTf)₃ or YbCl₃ in ether, containing $CaCO_3$ and MS4A, gave the best result (runs 2 and 3, Table 1). Under these conditions the β - and α -glycosides 3β and 3α , respectively, were obtained in a highly stereocontrolled manner.⁸ We assume that the mechanism of these glycosylation reactions entails an oxonium cation intermediate,⁹ since use

(1) (a) Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503. (b)
Koenigs, W.; Knorr, E. Ber. 1901, 34, 957.
(2) (a) Nicolaou, K. C.; Hummel, C. W.; Bockovich, N. J.; Wong, C.-H. J. Chem. Soc., Chem. Commun. 1991, 870. (b) Nicolaou, K. C.; Bockovich, N. J.; Carcanague, D. R. J. Am. Chem. Soc. 1993, 115, 8843.

Bockovich, N. J.; Carcanague, D. R. J. Am. Chem. Soc. 1993, 110, 8843.
(c) Nakano, T.; Ito, Y.; Ogawa, T. Tetrahedron Lett. 1991, 32, 1569.
(3) (a) Mukaiyama, T.; Murai, Y.; Shoda, S. Chem. Lett. 1981, 431.
(b) Suzuki, K.; Maeta, H.; Suzuki, T.; Matsumoto, T. Tetrahedron Lett.
1989, 30, 6879. (c) Hashimoto, S.; Hayashi, M.; Noyori, R. Tetrahedron Lett.
1984, 25, 1379. (d) Kunz, H.; Sager, W. Helv. Chim. Acta 1985, 68, 283. (e) Kobayashi, S.; Koide, K.; Ohno, M. Tetrahedron Lett. 1996, 247 31, 2435. (f) Kreuzer, M.; Thiem, J. Carbohydr. Res. 1986, 149, 347. (g) Wessel, H. P. Tetrahedron Lett. 1990, 31, 6863.

(4) (a) Zmbov, K. F.; Margrave, J. L. J. Phys. Chem. 1966, 70, 3379. (b) Kleinschmidt, P. D.; Lau, K. H.; Hildenbrand, D. L. J. Chem. Phys. 1981, 74, 653.

(5) For other glycosylation reactions using rare earth metal triflates, see: (a) Inanaga, J.; Yokoyama, Y.; Hanamoto, T. Tetrahedron Lett. 1993, 34, 2791-2794. (b) Matsubara, K.; Mukaiyama, T. Chem. Lett. 1994, 247. (c) Sanders, W. J.; Kiessling, L. L. Tetrahedron Lett. 1994, 35, 7335-7338.

(6) These fluorides were prepared from the corresponding 3,4,6-trior 2,3,4,6-tetra-O-benzyl or -benzoyl-D-sugars and DAST as previously described in the literature: Posner, G. H.; Haines, S. R. Tetrahedron Lett. 1985, 26, 5.

(7) Less satisfactory results were obtained in the absence of MS4A. For the use of MS4A in glycosylation reactions, see: (a) Nicolaou, K C.; Seitz, S. P.; Papahatjis, D. P. J. Am. Chem. Soc. 1983, 105, 2430 and references cited therein.

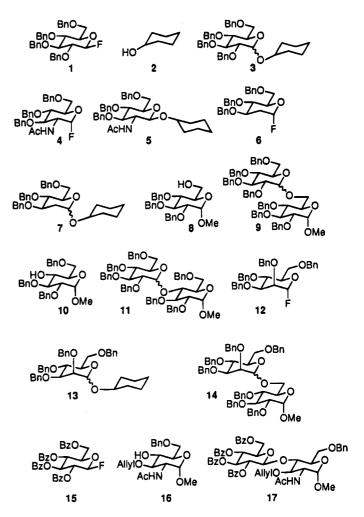


Figure 1. Glycosyl donors and acceptors and synthesized glycosides.

of CH₃CN as a solvent gave β -selectivity and use of Et₂O gave α -selectivity. With these excellent results in hand, we then turned our attention to the synthesis of 2-acetamido-2-deoxy- β -glycoside of the type 5. 2-Acetamido-2-deoxy- β -glycosides are very important components of peptidoglycans, glycoproteins, mucopolysaccharides, and blood group determinants. To the best of our knowledge, no direct glycosylation reaction using glycosyl fluorides with the 2-acetamide moiety has been reported. Thus, it was noteworthy that treatment of 46 with cyclohexanol (2) (1.2 equiv) in MeCN, containing $Yb(OTf)_3$ (1.2 equiv) and MS4Å, gave only the β -glycoside 5⁸ in 70% yield (run 4, Table 1). Interestingly, when this glycosylation reaction was carried out in the presence of K_2CO_3 , only the corresponding oxazoline was formed. Next the reaction was applied with the 2-deoxy sugar 6 as a glycosyl donor. Until now few experiments with 2-deoxy sugars have been reported, probably due to difficulties with control of reaction at the anomeric center.¹⁰ It was found that exposure of 6^6 to cyclohexanol 2 (1.2 equiv), Yb(OTf)₃ (1.2 equiv), K_2CO_3 (4.0 equiv), and MS4A in MeCN at -15 °C for 2 h gave 7 in 73% yield ($\alpha:\beta = 19:81$) (run 5, Table

⁽⁸⁾ The structures of two isomers, α - and β -anomer, were determined by ¹H- and ¹³C-NMR after silica gel column separation

^{(9) (}a) Paulsen, H. Angew. Chem., Int. Ed. Engl. 1982, 3, 155-224 and references cited therein. (b) Schmidt, R. R.; Behrendt, M.; Toepfer, A. Synlett 1990, 694–696.

^{(10) (}a) Juenneman, J.; Lundt, I.; Thiem, J. Acta Chem. Scand. **1991**, 45, 494-498. (b) Juenneman, J.; Lundt, I.; Thiem, J. Liebigs Ann. Chem. **1991**, 759-764.

Table 1. Glycosylation Reactions ^a Using Rare Earth Metal Salt	Table 1.	Glycosylation	Reactions ^a	Using Rare	Earth	Metal Salt
---	----------	---------------	------------------------	-------------------	-------	------------

entry	glycosyl donor	glycosyl acceptor ^b	glycoside	rare earth metal salt ^c	solvent	base ^d	additive	temp (°C)	time (h)	yield (%)	α:β
1	1	2	3	Yb(OTf) ₃	CH ₃ CN	K ₂ CO ₃		15	3.5	63	6:94
2	1	2	3	Y(OTf) ₃	Et_2O	CaCO ₃		rt	22	96	94:6
3	1	2	3	YbCl ₃	Et_2O	CaCO ₃		\mathbf{rt}	17	98	97:3
4	4	2	5	Yb(OTf) ₃	CH₃CN			\mathbf{rt}	14	70	β
5	6	2	7	Yb(OTf) ₃	CH₃CN	K_2CO_3		15	2	73	19:81
6	6	2	7	YbCl ₃	Et_2O	CaCO ₃		\mathbf{rt}	4	88	50:50
7	1	8	9	Yb(OTf) ₃	CH_3CN	K_2CO_3		15	3.5	68	12:88
8	1	8	9	Y(OTf) ₃	Et_2O	$CaCO_3$		rt	17	88	80:20
9	1	10	11	Yb(OTf) ₃	$CH_{3}CN$	K_2CO_3		rt	21	50	30:70
10	1	10	11	Yb(OTf) ₃	$CH_{3}CN$	K_2CO_3	$ZnCl_2$	rt	0.5	77	38:62
11	1	10	11	Yb(OTf) ₃	CH ₃ CN	K_2CO_3	$Ba(ClO_4)_2$	rt	0.5	79	39:61
12	1	10	11	Yb(OTf) ₃	CH ₃ CN	K_2CO_3	$ZnCl_2$	-15	38	61	22:78
13	1	10	11	Yb(OTf) ₃	CH ₃ CN	K_2CO_3	$Ba(ClO_4)_2$	-15	38	81	23:77
14	1	10	11	$Y(OTf)_3$	Et_2O	CaCO ₃		rt	41	66	74:26
15	12	2	13	Yb(OTf) ₃	toluene	K_2CO_3		\mathbf{rt}	37	94	35:65
16	12	2	13	Yb(OTf) ₃	toluene	K_2CO_3	$ZnCl_2$	\mathbf{rt}	2	100	39:61
17	12	8	14	Yb(OTf) ₃	toluene	K_2CO_3	$ZnCl_2$	\mathbf{rt}	42	94	60:40
18	12	8	14	Y(OTf) ₃	toluene	CaCO ₃		rt	87	74	58:42
19	15	16	17	Yb(OTf) ₃	CH₃CN	K_2CO_3	$Ba(ClO_4)_2$	55	14	52	β
20	15	16	17	La(ClO ₄)3 ^f	CH₃CN	K_2CO_3		-15	38	73	β

^a All reactions were carried out in the presence of MS4A. ^{b,c} 1.2 equiv was used. ^d 4 molar equiv was used. ^e ZnCl₂, Ba(ClO₄)₂; 0.6 equiv was used. ^f 2.4 equiv of La(ClO₄)₃·7H₂O was used.

1),⁸ while treatment of **6** with cyclohexanol **2** (1.2 equiv) in ether, in the presence of $YbCl_3$ (1.2 equiv), $CaCO_3$ (4.0 mol equiv), and MS4A at room temperature for 4 h, afforded 7 in 88% yield ($\alpha:\beta = 50:50$) (run 6, Table 1).⁸ Moreover, the glycosylation reaction was successfully applied to the synthesis of 9β and 9α . As shown in Table 1, 1 was stereoselectively converted to 9β in 68% yield $(\alpha:\beta = 12:88, \text{ run } 7)$, while 1 was also transformed into **9a** stereoselectively in 88% yield ($\alpha:\beta = 80:20$, run 8).⁸ Likewise, the glycosyl fluoride 1 was converted to 11 ($\alpha:\beta$ = 30:70),⁸ albeit in modest yield (50%, run 9). We have found that addition of the usual Lewis acids such as $ZnCl_2$ and $Ba(ClO_4)_2$ greatly accelerates the glycosylation reaction and also improves the chemical yield (runs 10-13). As expected, 1 remained unchanged by treatment with only the usual Lewis acids, MS4A and K₂CO₃ in MeCN, strongly suggesting that Yb(OTf)₃ was activated by the interaction with the usual Lewis acids, especially $Ba(ClO_4)_2$.^{11,12} On the other hand, exposure of 1 to 10, Y(OTf)₃ (1.2 equiv), CaCO₃ (4.0 mol equiv), and MS4A in Et_2O at room temperature for 41 h afforded 11α selectively in 66% yield ($\alpha:\beta = 74:26$, run 14).

Further, we examined the glycosylation reaction with the mannose derivative 12. Mannose is a very important component in sugar chains, where almost all the mannose residues have a β -linkage at their anomeric centers. Although mannosylation reactions are essential in order to synthesize sugar chains, a major problem still exists with construction of the β -linkage. We were pleased to find that treatment of 12^6 with cyclohexanol 2 (1.2 equiv), Yb(OTf)₃ (1.2 equiv), MS4A, and K₂CO₃ (4.0 mol equiv), in toluene at room temperature for 37 h provided 13β selectively in 94% yield ($\alpha:\beta = 35:65$, run 15).⁸ This reaction was found to be also accelerated by the addition of $ZnCl_2$ (0.6 equiv) as shown in Table 1 (run 16). Similar reaction conditions were next applied to the mannosylation reaction using 8 as a glycosyl acceptor, giving 14 in 94% yield ($\alpha:\beta = 60:40$, run 17).⁸ Finally, the glycosylation reaction using 15⁶ and 16 was investigated under a variety of reaction conditions. It was found that this reaction did not proceed in the absence of $Ba(ClO_4)_2$.

Exposure of **15** to **16** (1.2 equiv), Yb(OTf)₃ (1.2 equiv), Ba(ClO₄)₂ (0.6 equiv), K₂CO₃ (3 mol equiv), and MS4A, in MeCN at 55 °C for 14 h, gave only **17** β^8 in 52% yield (run 19). We also examined the glycosylation of **15** and **16** using La(ClO₄)₃·7H₂O as a promoter, since the naked environment of the metal in lanthanum perchlorate¹³ was expected to facilitate the glycosylation reaction. In fact, under these conditions we obtained only **17** β in 73% yield (run 20).¹⁴ This result bodes well for the new method, since treatment of **15** with **16** (1.5 equiv), SnCl₂ (2.4 equiv), AgClO₄ (2.4 equiv), and MS4A in MeCN at room temperature for 20 h^{2a,3a} afforded **17** β in only 43% yield.

In conclusion, we have succeeded in developing a new glycosylation reaction using rare earth metal salts, with or without the requirement of the usual Lewis acids such as ZnCl_2 and $\text{Ba}(\text{ClO}_4)_2$.¹⁵ We believe that this method can greatly facilitate glycosylations that use glycosyl fluorides as the glycosyl donor. Moreover, the results described herein should be quite instructive for future research that employs rare earth metals in organic synthesis.¹⁶ Further studies along this line are currently underway.

Supplementary Material Available: Spectral and analytical data for all compounds (4 pages). JO9418588

⁽¹¹⁾ For the combined use of two Lewis acids, see: Mukaiyama, T.; Shimomura, N. *Chem. Lett.* **1993**, 781 and references cited therein. (12) When **116** was represed to the various paraticle and therein.

⁽¹²⁾ When 11β was reexposed to the various reaction conditions we employed, but in the absence of glycosyl fluoride, unchanged 11β could be fully recovered. This proved that our reaction conditions did not promote isomerization.

^{(13) (}a) Bernardo, P. D.; Choppin, G. R.; Portanova, R.; Zanonato, P. L. Inorg. Chim. Acta **1991**, 207, 85–91. (b) Pascal, J. L.; Favier, F. J. Chem. Soc., Dalton Trans. **1992**, 1997–2002.

⁽¹⁴⁾ The reaction did not proceed by the use of $Yb(ClO_4)_3 \cdot 8H_2O$ as a promoter.

⁽¹⁵⁾ Typical procedure a: An activator (a rare earth metal salt, 1.2 mol equiv to a glycosyl donor), an inorganic base (K_2CO_3 or CaCO_3, 4.0 mol equiv), and MS4A (ca. 100 mg) were dried at ca. 110 °C in vacuo for 2 h. A solution (1 mL) of a well-dried glycosyl fluoride (30 mg, 0.055 mmol) and glycosyl acceptor (1.2 equiv) was then added. After the reaction was complete, saturated NaHCO₃ (aq) was added. Filtration to remove MS4A and usual workup gave a product which was purified by silica gel column chromatography. Typical procedure b: La(ClO₄)₃·7H₂O (2.4 mol equiv to a glycosyl donor), K₂CO₃ (4.0 mol equiv), and MS4A (ca. 100 mg) were dried at ca. 180 °C in vacuo for 2 h. A solution (1 mL) of a glycosyl fluoride (30 mg, 0.055 mmol) and glycosyl acceptor (1.2 equiv) was then added at -15 °C. After the reaction was complete, saturated NaHCO₃ (aq) was added. Filtration to remove MS4A and usual workup gave a product which was purified by silica gel column chromatography.

⁽¹⁶⁾ For recent progress in organic synthesis utilizing rare earth metal triflates as Lewis acids, see: Kobayashi, S.; Hachiya, I. J. Org. Chem., **1994**, 59, 3590 and references cited therein. Enhancement of the reactivity of rare earth metal triflates should open new possibilities for development of new reactions mediated by rare earth metal triflates.